382 research outputs found

    Helical Organic and Inorganic Polymers

    Full text link
    Despite being a staple of synthetic plastics and biomolecules, helical polymers are scarcely studied with Gaussian-basis-set {\it ab initio} electron-correlated methods on an equal footing with molecules. This article introduces an {\it ab initio} second-order many-body Green's-function [MBGF(2)] method with nondiagonal, frequency-dependent Dyson self-energy for infinite helical polymers using screw-axis-symmetry-adapted Gaussian-spherical-harmonics basis functions. Together with the Gaussian-basis-set density-functional theory for energies, analytical atomic forces, translational-period force, and helical-angle force, it can compute correlated energy, quasiparticle energy bands, structures, and vibrational frequencies of an infinite helical polymer, which smoothly converge at the corresponding oligomer results. These methods can handle incommensurable structures, which have an infinite translational period and are hard to characterize by any other method, just as efficiently as commensurable structures. We apply these methods to polyethylene (2/12/1 helix), polyacetylene (Peierls' system), and polytetrafluoroethylene (13/613/6 helix) to establish the quantitative accuracy of MBGF(2)/cc-pVDZ in simulating their (angle-resolved) ultraviolet photoelectron spectra, and of B3LYP/cc-pVDZ or 6-31G** in reproducing their structures, infrared and Raman band positions, phonon dispersions, and (coherent and incoherent) inelastic neutron scattering spectra. We then predict the same properties for infinitely catenated chains of nitrogen or oxygen and discuss their possible metastable existence under ambient conditions. They include planar zigzag polyazene (N2_2)x_x (Peierls' system), 11/311/3-helical isotactic polyazane (NH)x_x, 9/49/4-helical isotactic polyfluoroazane (NF)x_x, and 7/27/2-helical polyoxane (O)x_x as potential high-energy-density materials

    The Melting Temperature of Liquid Water with the Effective Fragment Potential

    Get PDF
    The direct simulation of the solid–liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (Tm) of ice-Ih. Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at P = 1 atm and T = 305 K, 325 K and 399 K, respectively, yielded corresponding Tm values of 378 ± 16 K, 382 ± 14 K and 384 ± 15 K. These estimates are consistently higher than experiment, albeit to the same degree as previously reported estimates using density functional theory (DFT)-based Born–Oppenheimer simulations with the Becke-Lee–Yang–Parr functional plus dispersion corrections (BLYP-D)

    Reducing Down(stream)time: Pretraining Molecular GNNs using Heterogeneous AI Accelerators

    Full text link
    The demonstrated success of transfer learning has popularized approaches that involve pretraining models from massive data sources and subsequent finetuning towards a specific task. While such approaches have become the norm in fields such as natural language processing, implementation and evaluation of transfer learning approaches for chemistry are in the early stages. In this work, we demonstrate finetuning for downstream tasks on a graph neural network (GNN) trained over a molecular database containing 2.7 million water clusters. The use of Graphcore IPUs as an AI accelerator for training molecular GNNs reduces training time from a reported 2.7 days on 0.5M clusters to 1.2 hours on 2.7M clusters. Finetuning the pretrained model for downstream tasks of molecular dynamics and transfer to a different potential energy surface took only 8.3 hours and 28 minutes, respectively, on a single GPU.Comment: Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems (NeurIPS

    The Effective Fragment Potential: Small Clusters and Radial Distribution Functions

    Get PDF
    The effective fragment potential (EFP) method for treating solventeffects provides relative energies and structures that are in excellent agreement with the analogous fully quantum [i.e., Hartree-Fock (HF), density functional theory(DFT), and second order perturbation theory (MP2)] results for small water clusters. The ability of the method to predict bulk water properties with a comparable accuracy is assessed by performing EFP molecular dynamics simulations. The resulting radial distribution functions (RDF) suggest that as the underlying quantum method is improved from HF to DFT to MP2, the agreement with the experimental RDF also improves. The MP2-based EFP method yields a RDF that is in excellent agreement with experiment

    Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    Get PDF
    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the augcc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuationopen

    Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient

    Get PDF
    Fragment molecular orbital molecular dynamics (FMO-MD) with periodic boundary conditions is performed on liquid water using the analytic energy gradient, the electrostatic potential point charge approximation, and the electrostatic dimer approximation. Compared to previous FMO-MD simulations of water that used an approximate energy gradient, inclusion of the response terms to provide a fully analytic energy gradient results in better energy conservation in the NVE ensemble for liquid water. An FMO-MD simulation that includes the fully analytic energy gradient and two body corrections (FMO2) gives improved energy conservation compared with a previously calculated FMO-MD simulation with an approximate energy gradient and including up to three body corrections (FMO3)
    • 

    corecore